groups of order $p^8$ and exponent $p$

نویسندگان

michael vaughan-lee

چکیده

we prove that for $p>7$ there are‎ ‎[‎ ‎p^{4}+2p^{3}+20p^{2}+147p+(3p+29)gcd (p-1,3)+5gcd (p-1,4)+1246‎ ‎] ‎groups of order $p^{8}$ with exponent $p$‎. ‎if $p$ is a group of order $p^{8}$‎ ‎and exponent $p$‎, ‎and if $p$ has class $c>1$ then $p$ is a descendant of $‎p/gamma _{c}(p)$‎. ‎for each group of exponent $p$ with order less than $‎p^{8} $ we calculate the number of descendants of order $p^{8}$ with‎ ‎exponent $p$‎. ‎in all but one case we are able to obtain a complete and‎ ‎irredundant list of the descendants‎. ‎but in the case of the three generator‎ ‎class two group of order $p^{6}$ and exponent $p$ ($p>3$)‎, ‎while we are able‎ ‎to calculate the number of descendants of order $p^{8}$‎, ‎we have not been‎ ‎able to obtain a list of the descendants‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

COMPUTATIONAL RESULTS ON FINITE P-GROUPS OF EXPONENT P2

The Fibonacci lengths of the finite p-groups have been studied by R. Dikici and co-authors since 1992. All of the considered groups are of exponent p, and the lengths depend on the celebrated Wall number k(p). The study of p-groups of nilpotency class 3 and exponent p has been done in 2004 by R. Dikici as well. In this paper we study all of the p-groups of nilpotency class 3 and exponent p2. Th...

متن کامل

FINITE NONABELIAN p-GROUPS OF EXPONENT > p WITH A SMALL NUMBER OF MAXIMAL ABELIAN SUBGROUPS OF EXPONENT > p

Y. Berkovich has proposed to classify nonabelian finite pgroups G of exponent > p which have exactly p maximal abelian subgroups of exponent > p and this was done here in Theorem 1 for p = 2 and in Theorem 2 for p > 2. The next critical case, where G has exactly p + 1 maximal abelian subgroups of exponent > p was done only for the case

متن کامل

THE NILPOTENCY CLASS OF FINITE GROUPS OF EXPONENT p

We investigate the properties of Lie algebras of characteristic p which satisfy the Engel identity xy" = 0 for some n < p. We establish a criterion which (when satisfied) implies that if a and b are elements of an Engel-n Lie algebra L then abn~2 generates a nilpotent ideal of I. We show that this criterion is satisfied for n = 6, p = 1, and we deduce that if G is a finite m-generator group of ...

متن کامل

An Exponent Bound for Relative Difference Sets in p-Groups

An exponent bound ia presented for abelian (pi+j, p0, p•+;, pi) relative c:liffere.nce sets: this botllld can be met for i $ j. RESULT For background in Relative Difference Sets (RDS), see [3]. The basic group ring equation for a RDS Din a group G with a forbidden subgroup N is nn<-1> = k + A(GN) If x is a character on the abelian group G, then we have three possibilities for I x(D) l=I L:dED x...

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of group theory

ناشر: university of isfahan

ISSN 2251-7650

دوره 4

شماره 4 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023